A reconstruction of Turkey’s potential natural vegetation using climate indicators

Abstract

Turkey, containing three of the world’s biodiversity hotspots, is a hub for genetic biodiversity. However, the vegetation cover has drastically changed in recent decades as a result of substantial transformations in land-use practices. A map of the potential natural vegetation can be used to represent the biodiversity of a country, and therefore a reference to effectively develop conservation strategies. The multinomial logistic regression is used to simulate the probability of different biomes occurring in the country using elevation, climatological data and natural vegetation data. A correlation test was applied to the climatological data to determine which predictors influence vegetation the most. These were temperature, precipitation, relative humidity and cloudiness. The Ordinary Kriging method was employed to transform the data into the format for the multinomial logistic regression model. The model showed that temperature was the most influencing factor with respect to Turkey’s vegetation and distribution follows a similar distribution as the various macroclimates. Broadleaf forests are mostly found in the Black Sea region, which is also the wettest region of the country. The Marmara region is the only other region where there are broadleaf forests. Mixed forests and shrublands are mostly located in Central Anatolia due to the region’s low humidity which favours herbaceous flora. Coniferous forests were dominant in the Aegean and Mediterranean regions, attributed to high temperatures.

Publication
In Theoretical and Applied Climatology

Related